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Figure 1: All images rendered with our speculative ray tracing technique. First three columns: a massive channel-flow turbulence DNS dataset. Last
two columns: an RM fluid instability dataset and an Enzo Astrophysics AMR dataset (left and right). The number of triangles from left to right: DNS2
(1.8 billion), DNS1-side and DNS1-back (0.9 billion), RM (108 million), and Enzo (8 million). Five images on the bottom row show ambient occlusion
shading, and the rest show three-bounce path tracing. For all datasets, 32 samples per pixel were used to render images at 1024×1024 resolution, and
one diffuse ray and 16 shadow rays were generated at every hit point. Using Stampede2 Skylake at the Texas Advanced Computing Center, each node
with 192 GB memory, at least eight nodes are required to render the DNS dataset with speculation enabled.

ABSTRACT

With modern supercomputers offering petascale compute capability,
scientific simulations are now producing terascale data. For compre-
hensive understanding of such large data, ray tracing is becoming
increasingly important for 3D-rendering in visualization due to its in-
herent ability to convey physically realistic visual information to the
user. Implementing efficient parallel ray tracing systems on super-
computers while maximizing locality and parallelism is challenging
because of the overhead incurred by ray communication across the
cluster of compute nodes and data loading from storage. To address
the problem, reordering rendering computations by means of ray
batching and scheduling has been proposed to temporarily avoid
inherent dependencies in the rendering computations and amortize
the cost of expensive data moving operations over ray batches. In
this paper, we introduce a novel speculative ray scheduling method
that builds upon this insight but radically changes the approach
to resolving dependencies by allowing redundant computations to
a certain extent. To evaluate the method, we measure the perfor-
mance of different implementations for both out-of-core and in situ
rendering setups. Results show that compared to a well-known
scheduling method, our approach on ambient occlusion and path
tracing achieves up to 2.3× speedup for the scenes comprising up to
billions of triangles extracted from terascale scientific data.

Index Terms: Human-Centered Computing—Visualization—
Visualization Techniques; Computing Methodologies—Computer
Graphics—Rendering—Ray Tracing
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1 INTRODUCTION

As data size increases, traditional post-processing methods for vi-
sualization, where the data is communicated through storage, are
becoming impractical owing to limited I/O bandwidth. Alternative
methods such as in situ and co-processing visualization that bridge
the data between simulation and visualization either through mem-
ory or interconnect networks have shown a promising path forward.
Simultaneously, ray tracing is becoming increasingly important for
3D-rendering in visualization because of its inherent ability to pro-
duce physically-based images. Hence, the goal of this paper is to
develop an efficient parallel ray tracing system and algorithms ca-
pable of rendering high-fidelity images for such enormous data on
supercomputers, while facilitating the aforementioned visualization
methods.

For rendering such complex scenes at scale, the data is subdivided
into a grid of domains such that each domain can fit into memory
and domains are assigned to distinct nodes of the cluster for parallel
computations. As such, ray tracing in this context requires managing
the rays and data in each subdivided region, which essentially makes
it a ray scheduling problem. Specifically, prior to performing ren-
dering computations, either the relevant data needs to be loaded into
where the rays are, or the rays need to be moved to where the data is
in the cluster. With this constraint, exploiting the massively parallel
compute resources on supercomputers while achieving locality (i.e.,
reducing data I/O, both between nodes and between a node and the
filesystem) is not only an important problem but also one of the key
challenges in improving performance.

In order to achieve this goal, a wide spectrum of methods have
been studied on many different computing platforms. One set of
methods reorder rendering computations by means of ray batching
and scheduling. This reordering technique temporarily avoids in-
herent dependencies in the rendering computations and amortizes
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expensive data moving operations across ray batches. However,
according to our preliminary studies, frequent reordering may in-
cur costly I/O operations. Moreover, because reordering does not
completely avoid rendering dependencies, they may further hinder
parallelism, compromising overall performance.

This paper addresses such problems by introducing a new ray
scheduling system and algorithms capable of rendering terascale
data on supercomputers. Our system, unlike previous ones, lever-
ages trade-offs between work efficiency, locality, and parallelism.
Our system promotes an amortization of expensive data loading
costs and parallel ray processing while allowing redundancy more
in a controlled way and compromising communication time. This
is specifically achieved by aggressive ray work creation via spec-
ulations of visibility queries. The end result is two variants of the
speculative ray scheduling system, each specialized for out-of-core
and in situ rendering. Our implementation, compared to a well-
known method, gains up to 2.3× speedup, enabled by an increased
level of parallelism as well as a significant amortization of expensive
data moving operations.

2 RELATED WORK

When rendering large scenes, the data, such as geometry, materials,
and textures, may not all fit into memory. Such rendering jobs can
be done using a cluster of compute nodes with the scene data stored
either in memory or out-of-core, depending on the cluster size.

As the scene becomes complex, efficiently managing millions
of rays traveling across different domains of the scene, along with
the local and remote data, easily becomes a non-trivial task. To
overcome the overhead incurred by file I/O and the forwarding
of different kinds of intermediate data, it is useful to frame as a
scheduling problem rather than a rendering problem. The following
sections provide an overview of such perspectives for both out-of-
core and distributed-memory ray tracers.

2.1 Out-of-Core Ray Tracing
Out-of-core ray tracing typically seeks to amortize expensive I/O
costs over many rays in-flight, which essentially means batching
rays to improve data locality. Rays are batched together based on
criteria distinct from one method to another, but the common goal is
to maximize the spatial coherence of ray batches.

Pharr et al. [19] designed an out-of-core ray tracing system capa-
ble of rendering large complex scenes by reordering the rendering
computation on the ray batch in a domain, based on cost and benefit
values associated with each domain. Budge et al. [5] implemented
a path tracer on a CPU/GPU hybrid system, which separates its
entirety into three distinct layers, each responsible for scheduling,
data management, and rendering computations. Moon et al. [14]
applied ray reordering to their path tracing and photon mapping
system but unlike others, their approach is cache-oblivious. They
newly defined a hit point heuristic which allows the spatially close
rays to be scheduled together. Eisenacher et al. [9] reduced loading
costs by deferring the shading of all hit points. Their method is
highly optimized for texture mapping in their production-level path
tracer.

Like the aforementioned approaches, our method attempts to im-
prove coherence by utilizing ray batching and scheduling. However,
our method maximizes the amortization of expensive I/O operations
even further by addressing the problem of inherent sequential de-
pendencies in the variants of Pharr’s rendering system [19]. Our
approach defers hit points similarly to Eisenacher’s [9], but we cast
speculative rays where they do not. Therefore, our system aggre-
gates many more rays before resolving all hit points, potentially
leading to a better amortization of costly I/O.

Another important distinction of our method is our scheduling
strategy. We use a ray distribution-based front-to-back scheduling in
which ray batches are scheduled in such a way that file I/O as well

as the processing of redundant rays is minimized. To this end, our
system collects the statistics of individual rays and evaluates metrics
to determine the order in which ray batches are scheduled.

2.2 Distributed-Memory Ray Tracing
In general, both software and hardware rendering systems have two
different spaces to work on: screen space and data space. In the
seminal paper written by Molnar et al. [13], depending on how
rendering work is sorted and distributed to processing elements
between these two spaces, rendering can broadly be classified as
sort-first, sort-middle, and sort-last. In order to distribute subsets
of work to individual nodes, sort-first and sort-middle decompose
screen space, whereas sort-last decomposes data space.

The concept of this sorting classification has equally been applied
to distributed-memory ray tracing. In screen-space decomposition,
each node takes a tile of the entire image plane and traces the camera
rays independently. As the rays bounce around in the scene, they
may touch different regions of the scene. Thus, the assignee node
must, for exactness, read associated data from either memory or
storage before processing them, depending on how large the scene
is. Majority of distributed-memory ray tracing systems to date have
followed this approach [2, 4, 7, 8, 16, 17, 22]. Our method uses this
sort-first screen-space decomposition for out-of-core rendering.

In data-space decomposition, each node is assigned one or more
domains, and it processes the rays in a domain until they either
terminate inside the domain or travel across the bounds of the domain
without intersecting any of the primitives in the domain. In this case,
the node holding the rays must send them to the data responsible for
the next domain that they enter. Many ray tracers, including volume
renderers, have employed this approach in order to fit large datasets
into aggregate memory of the cluster as well as to utilize abundant
parallel compute resources available [6, 10, 16, 18].

In addition, hybrid approaches combining these two decomposi-
tion methods have been studied [3,5,11,20,21]. Our method follows
this approach where subsets of screen space are initially distributed
across the cluster and newly spawned rays are forwarded to owner
nodes based on data-space decomposition.

The latest distributed-memory ray tracer is the one by Son and
Yoon [21]. Their system, targeted for a hybrid CPU/GPU cluster,
employs a time line-based scheduling, which uses a dependency
graph and a timing model to reduce the makespan (i.e., the running
time of processing all the tasks) of rendering and data sending.

Additionally, in the context of this paper, it is worth mentioning
the Kilauea ray tracer [11, 12] because our method shares similar
insight in terms of generating redundant rays. Both Kilauea and our
system leverage speculation as a means to exploit parallel compute
resources. However, Kilauea’s main drawback is that it associates a
state with a ray and maintains it in the owner node responsible for
the ray. Thus, the owner has to wait for a ray’s test result to arrive
from one or more nodes, which not only incurs a round trip latency,
compromising overall performance, but also requires additional ray
communication between nodes for redundantly spawned secondary
rays. By contrast, each node in our system maintains a set of local
speculation buffers, and the cluster collectively resolves physically
true hit points by compositing them in logarithmic time. Moreover,
Kilauea, unlike our method, does not provide ray scheduling via
speculation for out-of-core rendering.

3 PROBLEMS IN BASELINE METHODS

In this section, we review the concept of ray batching and scheduling
based on prior work, and we identify the problems using a simple
rendering example. Specifically, we study the work of Pharr et
al. [19] for out-of-core ray tracing and the work of Navrátil et al. [15,
16] for distributed-memory ray tracing. Pharr et al. established
a groundwork for ray scheduling and the concept has been well
applied to both in-core and out-of-core ray tracers to date. Navrátil
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Out-of-Core In Situ
Domain t0 t1 t2 t3 t4 t5 t6 Domain t0 t1 t2 t3 t4

A (r0,r1,r2) (s2) (s1) A r0,r1,r2 s2 s1

B r0 r0 (r0) B r0

C (r1,r2) (s1) C r1,r2 s1

D r1 r1 (r0,r1) D r0,r1

Load-
Process A C A B D C A

Process A B, C A, D C A
Send r0,r1,r2 r0,r1,s2 s1 s1

Color s2 Color s2

   

s1

s2

r1r2

r0

A B

C D

Figure 2: An example scene of four domains, each with a geometric object (left). A table showing the evolution of each domain and the operations required to render
the scene in two distinct rendering scenarios (right). For the out-of-core scenario, we assume a single node, and the data for each domain is fetched either from
in-memory cache or from storage. Ray batches within the parentheses are the ones scheduled at each time step. For the in situ scenario, we assume four nodes, each
with the preloaded data of a distinct domain. All four nodes concurrently process ray batches at each time step; thus, parentheses are implicit. Ray batches are
forwarded to owner nodes as needed.

1 while domains are nonempty
2 choose a domain with most rays
3 for each ray in domain
4 if camera ray
5 do ray-triangle intersection queries
6 if closest intersection found
7 compute ray’s color contribution
8 spawn shadow rays and place them in current domain
9 else

10 place ray in next closest hit domain
11 else if shadow ray
12 do ray-triangle occlusion queries
13 if unoccluded
14 if next closest hit domain exists
15 place ray in next domain
16 else
17 update color with ray’s contribution

Listing 1: A baseline method for scheduling ray batches in different domains.

extended the work to the realm of distributed-memory ray tracing
for large data visualization.

We can abstract both methods as the pseudocode in Listing 1,
which assumes processing only camera and shadow rays without
spawning secondary rays. The basic idea is to find the closest domain
of a ray and defer processing it until the next scheduling step where
all other rays placed in the same domain are processed together
at once. Such ray batching and deferring essentially amortize the
costs for data loading and memory access. To briefly describe the
algorithm, the ray batch in a domain is first chosen based on some
heuristic (a domain with most rays in this case). Then, the rays are
tested against geometry within the domain to determine a closest
hit point for a camera ray and an occlusion for a shadow ray. If the
ray crosses the domain bounds without any intersection, it is placed
in the next closest domain for the next round of scheduling. This
iterative process persists until all rays are terminated.

Given the method, we render the scene in Fig. 2 having four geo-
metric shapes in separate domains and a light source and a camera
placed next to domain A. Two camera rays, r1 and r2, respectively
hit on the two shapes of triangle and circle in domains C and D,
from which two shadow rays, s1 and s2, are subsequently spawned.
The table in Fig. 2 considers two rendering scenarios: out-of-core
rendering on a compute node and in situ rendering of distributed
in-core data on four compute nodes.

For simplicity, we first illustrate the out-of-core scenario by show-
ing how each domain evolves with ray batches using the baseline
algorithm, which runs to completion until all rays in the scene are
processed. We choose a domain with most rays for the heuristic
and for a tie breaker, the priority is given in the order of domains

A through D. At t0, all three camera rays are in domain A and the
remaining domains are empty. Thus, the ray batch in domain A is
processed and since none of the rays intersect the pentagon, they
are moved to next domains (i.e., r0 to domain B and r1 and r2 to
domain C). At t1, domain C is scheduled over domain B based on
the heuristic, and in domain C, only r2 intersects the triangle so a
shadow ray s2 is spawned and moved to domain A without an oc-
clusion. r2 is terminated as it travels beyond the scene. r1, however,
is moved to domain D without a hit. At t2, domain A is scheduled
again according to the tie breaker. Since s2 is an unoccluded shadow
ray moving out of the scene, it is terminated after the pixel is updated
with its color contribution. The scheduling of remaining ray batches
repeats similarly as described.

Next, for the in situ scenario, we parallelize the processing of ray
batches using four compute nodes. As shown in Fig. 2, the behavior
diverges at t1 since the two ray batches in domains B and C are
processed in parallel. The processing of the ray batch in domain C
is identical as it is done in the out-of-core scenario. r0 in domain
B, however, is sent to domain D without a hit. At t2, the processing
of ray batches in domains A and D updates the pixel of s2 with its
color and spawns a shadow ray s1, which is eventually advanced
to domain A (via domain C), where it is terminated owing to an
occlusion by the pentagon.

For the out-of-core scenario, we assume that all four domains
are processed on a single node, assuming only one domain can fit
in memory. Whenever a ray batch is scheduled, the domain is read
either from in-memory cache or from storage. Thus, the scheduling
of same domains for consecutive scheduling steps reduces expensive
loading time. However, this example exhibits no such occurrences
but incurs the overhead of three additional loads compared to the
required four loads, a 75% additional performance impact. For the
in situ scenario, each node owns one distinct domain of the four.
Therefore, ray batches are sent to domain owners at each time step.
Once all rays are sent to owner nodes, ray batches on different nodes
are processed in parallel, thus enhancing the ray processing time.
One problem here is that as the render progresses, the number of
active ray batches shrinks and processors become underutilized. As
implied by Fig. 2, the node utilization is 35% on average (i.e., only
one or two nodes are active at any given time).

The data loading overhead and the decreased level of parallelism
are caused by two factors. First, partitioning the scene into domains
compromises the scheduling coherence of ray batches, particularly
in the context of this algorithm. That is, a ray that travels across
domain boundaries may lead to expensive storage access. A domain
already visited may be revisited in a later scheduling step due to
newly created shadow and secondary rays moving into it. Second,
inherent dependencies of the algorithm hinder the sustainability of
parallelism due to the sequential nature of ray-domain traversal.
Specifically, a ray-to-ray dependency requires that spawning a new
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ray is deferred until after the parent ray’s hit point is found. A
ray-to-domain dependency requires that a domain is processed only
after a ray has entered it. With these two observations, we address
the problems in the next section by introducing our speculative ray
scheduling approach.

4 SPECULATIVE RAY SCHEDULING

As a way to improve performance, our method exploits data locality
and parallelism in the same spirit as prior work. However, the main
idea of our approach adds the concept of speculate-first-and-resolve-
later to leverage underutilized processing resources when few active
rays are traced. Our method thus completely discards dependencies
by scheduling rays speculatively at the earliest and deferring res-
olution of the speculation until the processing of all speculatively
generated rays is finished. In the following two sections, we elabo-
rate on this concept using two rendering variants: one tailored for
out-of-core and one tailored for in situ.

4.1 Out-of-Core Rendering
For out-of-core rendering, we assume the sort-first screen-space
decomposition, which means that each node owns the entire domains
of a scene to render a subset of the image plane, which is often called
a tile. Therefore, even if multiple nodes are used, ray communication
between nodes is unnecessary since each node can independently
render the tile. Communication only occurs when the pixel values
of each node are composited into the frame buffer of a display node
at the end.

As shown in Fig. 3, our rendering system takes camera rays as
the input and generates rendered pixels at the end. Each rendering
job undertakes four distinct phases: domain intersection, domain
scheduling, domain traversal, and visibility resolution. We now
elaborate on each of the four phases.

4.1.1 Domain Intersection
Ray-domain intersection tests are performed on incoming camera
rays and newly generated secondary rays. As a result, a set of ray
batch queues are used to speculatively place each ray in all of its hit
domains, and statistics are updated as subsequently described.

4.1.2 Domain Scheduling with a Front-to-Back Heuristic
The main role of the domain scheduling is to promote an early rejec-
tion of redundant ray-primitive queries performed on the speculative
rays that are highly probable of having closer hits or occlusions
in the domain other than the current domain scheduled. This is
achieved by reordering domains such that the ray batch in each do-
main is likely to traverse most of the hit domains in front-to-back
order. Such rejection tests ultimately eliminate the unnecessary data
loading caused by speculatively queued rays.

A schedule, defined as the order in which domains are processed
in the subsequent phase of domain traversal, is evaluated. Briefly
explaining, as depicted in Fig. 4, we use the ray distribution statistics
collected for each domain to evaluate what we call a traversal score
and sort the scores in descending order to get the schedule.

Specifically, whenever a ray is speculatively queued into a domain,
we increment the counter value corresponding to its domain ID and
the distance between the ray origin and the hit point on the domain
boundary, defined as a domain hit depth. Given the ray distributions
collected in this way, we evaluate the traversal score of each domain
by taking a weighted sum of the ray counts at different domain hit
depths and finally sort them to get the order in which ray batches
are processed. Here is a procedure in more detail for estimating the
order.

1. Initialize an array of Counter[N][M] to zeros. N is the number
of domains in the scene and M is the maximum number of hit
domains that the array can hold for each domain.

2. For each ray, perform ray-domain intersection tests to get a
list of the domains that it intersects, and sort them by distance
from the ray origin. Iterating the list, increment the value
at Counter[i][ j] by one, where i is a domain ID and j is a
domain hit depth with zero being the nearest and d −1 being
the farthest, if d (≤ M) domains are hit by the ray.

3. For each domain i, estimate the traversal score by eval-
uating a weighted sum of the counter values, Score[i] =
∑

M−1
j=0 w j Counter[i][ j], where w j is a weight used to put em-

phasis on closer domains. We simply use w j = M− j to take
relatively higher weights on the domains near the majority of
ray origins in the scene.

4. Sort the array Score[0 . . .N − 1] in descending order to get
a traversal order. The domain at Score[0] is the first one to
process.

4.1.3 Domain Traversal
Once a domain schedule is available, we can start processing ray
batches in the given order, namely a ray-domain traversal. During
the traversal, a ray may intersect many surfaces, and each potential
intersection increases the number of speculative rays needed. This
not only requires more memory space but also requires computing
more ray-primitive tests. Worse, if the speculation of a ray is ulti-
mately discarded (e.g., an earlier termination point was found) and
the domain data needs to be brought into memory from storage, the
redundant data loading may significantly increase overall running
time. Therefore, prior to performing such expensive operations,
ray batches undertake a filtering step where only the rays that are
more likely to be a correct speculation are sorted out for further
processing.

Given the ray batch of a scheduled domain, the domain data
is loaded either from a domain cache in memory or from storage,
depending on the cache status. Then, ray-primitive tests are per-
formed on the ray batch. If the closest hit is found for a radiance
ray, speculative secondary rays are spawned according to the surface
material. A shadow ray is then inserted into a commit queue with
an occlusion flag, and a radiance ray is inserted into a spill queue
only if its ray depth exceeds the maximum speculation ray depth,
defined as a history depth. In addition, for both types of secondary
rays except the radiance rays in the spill queue and occluded shadow
rays, ray-domain intersection tests are performed, the rays are spec-
ulatively placed in all of their hit domains, and statistics are updated
accordingly. As a result, the ray batch queues may or may not be
empty at this point.

To manage all the speculations, we allocate a history buffer which
maintains a history of hit distances (i.e., t values) for every screen-
space sample location, and its state is constantly updated as a new
hit point is found. In addition, each ray locally maintains its own
history of the ancestor rays so it can be compared against the globally
managed history buffer for ray filtering or visibility resolution in
the subsequent phase. If all t values up to the current ray depth are
identical to each other, the speculations are valid. If any of the older
t values in the history buffer (i.e., earlier bounces preceding the ray
being tested) are less than the associated t values in the local history,
the speculations are invalid. If the converse is true, the history buffer
is updated with the ray’s history.

4.1.4 Visibility Resolution
As one round of domain traversal terminates, all the speculative
shadow rays inside a retire queue are resolved using the history
buffer and the color contributions of physically valid shadow rays
are accumulated into the pixel values. Then, the empty retire queue
is swapped with the commit queue in double buffering fashion. The
reason for the swap is that a domain traversal may not be complete
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Figure 3: An abstract view of our speculative ray scheduling system for out-of-core rendering. A set of ray batch queues for N domains are used to speculatively place
a ray in all the hit domains. A commit queue and a retire queue are used in double buffering fashion. The commit queue is used to insert the speculative shadow
rays newly created in the ray processing step. The retire queue is used to resolve all the speculative shadow rays previously committed and retire their pixel values.
A history buffer, which can accommodate k screen-space samples with a ray depth of H, is used to maintain a speculation history of the t values of each ray. An
in-memory domain cache loads domain data from storage.
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Figure 4: Ray distribution-based front-to-back scheduling for out-of-core render-
ing. A domain scheduler uses the ray distributions of N domains to estimate the
traversal scores and sort them in descending order. A schedule is merely the
sorted domain IDs.

for the shadow rays spawned in the middle of the traversal. Thus,
only the ones committed in the previous round of traversal are safely
taken for retiring.

If any of the ray batch queues and the retire queue are nonempty,
another round of domain traversal is initiated with a new schedule
(Loop 2 of Fig. 3). Otherwise, the system restarts to process the rays
in the spill queue after resolving their visibility using the history
buffer (Loop 1 of Fig. 3).

4.1.5 Implementation
Listing 2 shows the main function. During the initialization (Lines 2-
3), the ray depth and ray counters are reset, camera rays are specula-
tively queued into radiance queues, and the corresponding ray coun-
ters, each indexed by the domain ID and the domain hit depth, are
accordingly incremented. The outermost loop (Lines 4-27) repeats
until the spill queue becomes empty. The spill queue is populated
with all the radiance rays that overflow the history buffer. They wait
there until the inner while loop (Lines 11-25) retires shadow rays
to update pixel values. The main purpose of the outermost loop is
to offer the system an ability to adjust speculation by allowing the
while loop to spawn new radiance rays only up to a certain number
of ray bounces and limit the size of the history buffer. At the end of
the loop, the ray depth is incremented by the history depth.

The for loop (Lines 6-9) iterates the spilled rays to resolve their
visibility by comparing their local history against the up-to-date
history buffer and if visibility is correct, it speculatively places the
resolved ones into radiance queues and increments the ray coun-
ters. Then, the history buffer is reset before the next round of ray
scheduling begins (Line 10).

As long as there is a ray to process, the while loop finds a new
schedule (Line 12) and feeds it into the for loop (Lines 13-22) that
performs domain traversal. Once one round of domain traversal for
a given schedule is done, it resolves visibility for all the shadow rays
in the retire queue and updates the pixel values of the resolved ones
(Line 23). It then swaps the commit and retire queues as well as the

1 function oocSpray()
2 ray depth = 0, statistics.reset(), generate camera rays

3 domainQueuing(camera rays, statistics /∗ ray counters ∗/)
4 repeat

5 // ∗ RQ: radiance queue, ∗ SQ: shadow queue, hbuf: history buffer
6 for each ray in qs(SPILL RQ).get()

7 if hbuf.visibility(ray) is success

8 domainQueuing(ray, statistics)

9 ray.reset()

10 hbuf.reset()

11 while any queues of {RQ, SQ IN, RETIRE SQ} are nonempty
12 schedule = statistics.schedule()

13 for i = 0 to N-1

14 domain = schedule.get(i)

15 filter(RADIANCE, domain, RDATAQ, RQ)

16 filter(SHADOW, domain, SDATAQ IN, SQ IN)

17 filter(SHADOW, domain, SDATAQ OUT, SQ OUT)

18 if any filtered queues are nonempty

19 domain.load()

20 processRQ(domain, RQ, COMMIT SQ, ray depth)

21 processSQ(domain, SQ IN, RETIRE SQ)

22 processSQ(domain, SQ OUT, COMMIT SQ)

23 retire(RETIRE SQ, hbuf)

24 swap(COMMIT SQ, RETIRE SQ)

25 swap(SQS IN, SQS OUT)

26 ray depth = ray depth + H

27 until !qs(SPILL RQ).empty()

Listing 2: The main function for out-of-core rendering.

input and output shadow queues (Lines 24-25).
Following a schedule, the for loop (Lines 13-22) first filters out

the rays unnecessary for ray-primitive tests (Lines 15-17), and while
the filtered queues are nonempty, it loads a domain either from the
domain cache or from storage and performs ray-primitive tests on
the input rays (Lines 20-22).

Listing 3 shows how input rays are sorted out for ray filtering.
Notice that there are two different data structures for ray queuing: a
ray itself and a ray wrapper that includes a metadata having a domain
hit depth and a distance between the ray origin and the domain. The
metadata is needed for both filtering and gathering statistics for ray
distributions. Given a ray data, the filter function decrements
the ray counter and moves the ray to the output queue only if its
predicate is true. The predicate function checks for valid visibility
(Line 8). Furthermore, for a radiance ray, it checks whether a ray’s
hit point is farther than the current domain processed (Line 10), and
for a shadow ray, it checks whether a ray is unoccluded (Line 12).

Listing 4 shows ray processing. The processRQ function per-
forms ray-primitive intersection tests on filtered radiance rays. If a
ray has a hit and successfully updates the history buffer with valid
visibility, the function runs a shader to spawn secondary rays and
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1 function filter(raytype, domain, in qtype, out qtype)
2 for each raydata in qs(in qtype, domain.id).get()

3 statistics.decrement(domain.id, raydata.domain depth)

4 if predicate(raytype, raydata) is true

5 qs(out qtype, domain.id).push(raydata.ray)

6 function predicate(raytype, raydata)
7 // t domain: distance between ray origin and current domain
8 if hbuf.visibility(raydata.ray) is success

9 if raytype is RADIANCE

10 return hbuf.fartherThan(ray.sample, raydata.t domain)

11 if raytype is SHADOW

12 return not raydata.ray.occluded

Listing 3: Ray filtering for out-of-core rendering.

1 function processRQ(domain, qin type, commitq type, ray depth)
2 for each ray in qs(domain, qin type).get()

3 hitinfo = domain.intersect(ray)

4 if hitinfo.hit and hbuf.update(ray, hitinfo) is success

5 // rs: radiance rays, ss: shadow rays, spill queue populated internally
6 rs, ss = shade(domain, hitinfo, ray, ray depth)

7 processSecondary(domain, rs, ss, commitq type)

8 function processSecondary(domain, rs, ss, commitq type)
9 for each r in rs

10 domainQueuing(r, statistics)

11 for each s in ss

12 if not domain.occluded(s)

13 no hit on other domains = domainQueuing(s, statistics)

14 if no hit on other domains

15 s.committed = true

16 qs(commitq type).push(s)

17 function processSQ(domain, qin type, commitq type)
18 for each ray in qs(domain, qin type).get()

19 if domain.occluded(ray) ray.occluded = true

20 else if not ray.committed

21 ray.committed = true

22 qs(commitq type).push(ray)

Listing 4: Ray processing for out-of-core rendering.

calls the processSecondary function, which either conditionally
or unconditionally places the spawned rays to their hit domains and
increments the ray counters (Lines 10 and 13). If an unoccluded
shadow ray in the current domain does not intersect any other do-
mains, it is pushed into the commit queue with its committed flag
set. Likewise, the processSQ function performs ray-primitive oc-
clusion tests on filtered shadow rays. If a ray has an occlusion, its
occluded flag is set; otherwise, it is pushed to the commit queue
with the committed flag set only if it has not been committed.

4.2 In Situ Rendering
For in situ rendering, we assume a sort-last data-space decompo-
sition, modeling tightly-coupled in situ where data remains as dis-
tributed by the simulation. In this case, each node in the cluster
owns a portion of the domains. Therefore, if a ray leaves the spatial
extent of local data, but not of the dataset overall, the ray must be
sent to the remote node that contains the next domain to traverse.
For each node, we create a ray queue for each domain stored there
and cycle through the queues round-robin to trace rays (in contrast
to the out-of-core case where we actively schedule the next domain
to process).

To improve performance, our in situ rendering system, shown
in Fig. 5, provides processors with an ample amount of ray work
through speculation, which is intended to increase available paral-
lelism in the system. At a high level, each node performs ray-domain
tests on input rays; speculatively places them in all hit domains, as-
suming they may or may not have a hit in a domain; sends each of
the speculative ray batches to the node holding the data; performs
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Figure 5: A speculative ray scheduling system for in situ rendering. Each node
allocates a set of ray batch queues to buffer both local and remote rays. An
intersection cache is used to buffer speculative secondary rays and their ray-
primitive test results. A retire queue is used to buffer resolved shadow rays
until they are retired. Resolved rays with cached test results are bypassed to a
cache queue before the next round of ray scheduling begins.

ray-primitive tests on incoming ray batches; and locally caches spec-
ulatively spawned secondary rays along with the ray-primitive test
results. Then, all nodes collectively perform visibility composit-
ing to resolve the speculations, and the whole process repeats with
ray-domain tests performed on the resolved secondary rays.

4.2.1 Domain Intersection and Ray Scattering

We initially divide the image plane into tiles to assign them to
distinct nodes. Each node then creates independent camera rays
for the assigned tile and performs ray-domain tests to speculatively
place them in the ray batch queues. Since individual domain data
are mapped to different nodes, ray batches are subsequently sent to
owner nodes through point-to-point communication.

4.2.2 Ray Processing and Visibility Compositing

Finishing the ray communication, each node starts performing ray-
primitive tests on ray batches. As a result, if secondary rays are
spawned, each node immediately performs speculative ray-primitive
tests on them and saves them into an intersection cache along with
the test results. Once the processing of all rays including the spec-
ulative ones is finished, the cluster synchronizes to resolve all the
accumulated speculations. Consequently, we allow the system to
exploit as much parallelism as possible early on, without any node-
to-node dependencies. Moreover, after all speculations are resolved,
each node can fast move onto the speculative queuing step with the
help of cached test results.

To resolve visibility, for every ray sample, each node maintains a
t value and a single-bit occlusion flag after performing ray-primitive
tests. For this purpose, each node utilizes a distance buffer (t-buffer)
and an occlusion buffer (o-buffer). Since many speculation rays may
exist for the same ray sample location, each node constantly updates
the buffers with test results as necessary.

Each node allocates two t-buffers which allow for processing both
incident and outgoing rays in the same iteration. That is, one of them
is used for populating t values for the current rays being processed
and the other is used for resolving visibility of the rays generated in
the previous iteration. Sending rays is expensive, especially when
the ray count grows large under aggressive speculation. Hence, in
order to minimize the communication cost, we use a history depth of
one, in contrast to the out-of-core case. Furthermore, the o-buffer is
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1 function insituSpray()
2 ray depth = 0, partition = getPartition(process id)

3 partition.loadAllData(), generate camera rays

4 domainQueuing(camera rays)

5 while true

6 work counter.allreduce(SUM)

7 if work counter.allDone() break

8 send and receive rays based on partition

9 for each domain in partition

10 processQ(CACHE, domain, tbuf out, ray depth)

11 processQ(LOCAL, domain, tbuf out, ray depth)

12 processQ(RECV, domain, tbuf out, ray depth)

13 if ray depth < MAX DEPTH tbuf out.allreduce(MIN)

14 if ray depth > 0

15 obuf.allreduce(BITWISE OR)

16 retire(qs(RETIRE).get(), tbuf in)

17 obuf.reset()

18 tbuf in.reset()

19 swap(tbuf in, tbuf out)

20 resolveVisibility(tbuf in)

21 work counter.populate()

22 ray depth = ray depth + 1

Listing 5: The main function for in situ rendering.

required since the results of occlusion tests on speculatively created
shadow rays are scattered across the cluster.

After ray processing, the system composites the buffers across all
nodes to achieve coherent global buffer state.

4.2.3 Visibility Resolution
With the t-buffer and o-buffer in consistent state, each node starts
resolving visibility for the speculative rays in the intersection cache.
A resolved radiance ray with a hit is pushed to a cache queue with
its hit information for the next iteration of ray scheduling.

For a radiance ray, if a hit is found in the domain where it is
spawned, we can possibly eliminate further ray-domain tests for the
speculative queuing step if other domains are located farther than the
hit point. Likewise, for an occluded shadow ray, redundancy caused
by speculation can be reduced greatly. Therefore, upon caching the
radiance ray, each node conditionally performs ray-domain tests to
place it in the domains other than the current one.

If a resolved shadow ray is occluded, the single-bit occlusion flag
in the o-buffer is set. Otherwise, each node commits the ray to a
retire queue, maintains it until its visibility is determined in the next
iteration for color updates, and unconditionally places it in all the
domains intersected by the ray besides the current one. Notice that
the shadow rays in the retire queue from the previous iteration must
be retired before committing newly resolved ones.

4.2.4 Implementation
Listing 5 is the main function. The initialization resets the ray
depth, loads all the domains mapped to each node, and speculatively
queues camera rays into the hit domains (Lines 2-4). The while
loop repeats until there is no more work available at the cluster level
(Lines 6-7 and 21) and increments the ray depth at every iteration.
If a node has one or more rays to work on, they are redistributed
according to the data-domain mapping (Line 8). Then, each node
starts processing different types of ray batches (Lines 9-12). CACHE
refers to the rays with cached intersection results obtained from
previous iterations, LOCAL and RECV refer to the rays not commu-
nicated and communicated, respectively. Then, the values of the
o-buffer and output t-buffer are composited using MPI Allreduce
with the minimum and bitwise-or operators, respectively (Lines 13
and 15). Notice that the conditional statements (Lines 13-14) avoid
unnecessary compositing for the first and last ray bounces. Then, the
shadow rays in the retire queue, which are not speculative any more

1 function processQ(qtype, domain, tbuf out, ray depth)
2 for each ray in qs(qtype, domain, SHADOW).get()

3 if not obuf.occluded(ray) and domain.occluded(ray)

4 obuf.set(ray)

5 for each ray, hitinfo in qs(qtype, domain, RADIANCE).get()

6 if qtype is not CACHE hitinfo = domain.intersect(ray)

7 if hitinfo.hit

8 if tbuf out.update(hitinfo, ray) is success

9 rs, ss = shade(domain, hitinfo, ray, ray depth)

10 for each r in rs

11 hitinfo2 = domain.intersect(r)

12 isect cache.push(r, hitinfo2)

13 for each s in ss

14 hitinfo2 = domain.occluded(s)

15 isect cache.push(s, hitinfo2)

Listing 6: Ray processing for in situ rendering.

1 function resolveVisibility(tbuf in)
2 for each ray, hitinfo in isect cache

3 if tbuf in.visibility(ray) is success

4 if ray is RADIANCE

5 if hitinfo.hit

6 qs(CACHE, hitinfo).push(ray, hitinfo)

7 domainQueuing(ray, hitinfo)

8 else if ray is SHADOW

9 if hitinfo.occluded obuf.set(ray)

10 else

11 qs(RETIRE).push(ray)

12 domainQueuing(ray, hitinfo)

Listing 7: Visibility resolution for in situ rendering.

since their speculations were previously resolved, are used to update
the pixel values, followed by an o-buffer reset (Lines 16-17). For the
double buffering of t values, the output t-buffer is updated within
processQ calls, and the input t-buffer is reset and swapped with the
output t-buffer at the end of each iteration (Lines 18-19). Finally,
visibility for all secondary rays is resolved, and the resolved rays
are either conditionally or unconditionally queued into the domains
depending on the ray type (Line 20).

Listing 6 performs ray-primitive tests on different types of ray
batches. If an occluded shadow ray is found, the single-bit flag in
the o-buffer, given by the screen-space sample ID and light ID, is set
(Lines 2-4). It is safe to update the o-buffer here since visibility for
the shadow ray was previously resolved. For a radiance ray with a hit,
implicitly true for a cached ray, if it successfully updates the output t-
buffer (i.e., the hit is the closest one so far), we run a shader function,
perform ray-primitive tests on the secondary rays, and insert the rays
and test results into the intersection cache (Lines 5-15).

Listing 7 resolves visibility for the secondary rays in the inter-
section cache by comparing each ray’s local history (i.e., the parent
ray’s t value) against the input t-buffer. A resolved radiance ray with
a hit is cached for reuse (Lines 4-6). Furthermore, the radiance ray
is speculatively queued into the domain that is closer than the ray’s
hit point on a surface (Line 7). For a resolved shadow ray, if it is
occluded, the corresponding bit in the o-buffer is set. Otherwise, the
shadow ray is buffered into the retire queue and it is unconditionally
queued into the hit domains (Lines 8-12).

5 EVALUATION

To evaluate our speculative rendering system, we developed both
the baseline and our methods starting from scratch. For out-of-
core rendering, we implemented Navrátil’s LoadAnyOnce dynamic
scheduling algorithm [16] as a baseline. The baseline algorithm
allows each process to schedule any domains based on a scheduling
policy that chooses a domain with most rays. Therefore, to enable
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Table 1: Benchmark datasets. Enzo: Astrophysics AMR. RM: Richtmyer-
Meshkov fluid instability. DNS: Channel-flow turbulence.

Dataset Enzo RM DNS1 DNS2
# Triangles (# Domains) 6 M (16) 108 M (52) 0.9 B (720) 1.8 B (1427)
Raw Data Size 940 GB 8 GB 483 GB 483 GB
Data Partitioning Non-uniform rectilinear grid Uniform rectilinear grid

in situ rendering, where domains are statically assigned to distinct
process, we slightly had to modify the original algorithm such that
each process applies the scheduling policy to its own domains only.

Our system employs two-tier hierarchical bounding volume hi-
erarchies (BVHs) for acceleration structures. An upper-level BVH
for ray-domain queries is built on top of the bounding boxes repre-
senting domain boundaries, and a lower-level BVH for ray-primitive
queries is built on top of each domain’s surface data. The light-
weight top BVH is built only once at start-up time prior to initiating
a rendering job, whereas the lower-level BVH is built on a demand
basis, as the associated domain data is brought into the domain cache
from storage. For both BVH build and traversal, we use APIs offered
by Embree v2.17.1 [23].

Upon loading a domain data, the domain cache starts building a
BVH and saves it to an available cache entry. If all entries are full,
it uses a least-recently used (LRU) eviction policy to free the BVH
and domain data of the victim entry.

We measured all of the results by running our rendering system on
the Skylake partition of the Stampede2 supercomputer at the Texas
Advanced Computing Center. Each node has two 24-core Intel Xeon
Platinum 8160 processors, each with 2-way hyperthreading, and
192 GB of system memory. We use up to 128 nodes that communi-
cate via a 100 GB/sec Intel Omni-Path interconnection network. We
compiled our code using v18.0.2 of the Intel C++ compiler and the
Intel MPI library.

To verify rendering results and measure performance, we used real
datasets obtained from scientific simulations. Table 1 summarizes
the dataset characteristics. Fig. 1 shows images of the visualized
datasets using our rendering system. We believe that the number of
triangles for Enzo is immensely small compared to its raw data size
because we extracted isosurfaces from the low-res first level of the
AMR data. To obtain a model file for each domain, we partitioned
each raw data into a 3D grid of domains and extracted isosurfaces
using ParaView v5.4.1 [1]. For out-of-core rendering, each process
owns all domains. For in situ rendering, we evenly assigned a set of
adjacent domains to each process along the z-order curve.

To study behavior when rendering visually compelling images,
we tested both path tracing (PT) and ambient occlusion (AO). For
both PT and AO, we used 32 samples per pixel and generated 16
shadow samples for each hit point on a surface. We limited the
maximum number of bounces to three for PT and one for AO. For
out-of-core rendering, we used aggressive speculation: we set the
history depth to the same value as each targeted ray depth. For
materials, we assumed purely diffuse surfaces and used the Blinn-
Phong shading model for direct illumination. For all datasets, we
rendered images at 1024×1024 resolution.

We test our in situ system using the DNS dataset, as the originat-
ing simulation can operate at scales requiring in situ analysis, and
our tests serve both as evaluation and prototyping for eventual in
situ integration with the simulation. We test out-of-core rendering
using the Enzo and RM datasets, where we incrementally shrink the
domain cache size to emulate increasing memory pressure.

5.1 Results
5.1.1 Out-of-Core Rendering
Fig. 6 compares the performance of our method to the baseline for
rendering Enzo and RM in out-of-core mode. We varied the size of
domain caches from 25% to 100% of the total number of domains
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Figure 6: Performance comparison of out-of-core rendering for Enzo and RM
(top and bottom). Domain cache sizes are calculated as a percentage of the total
domain count. Our speculative method outperforms the baseline. Maximum
speedup for total running time and loading time, respectively: (Enzo) 1.7×,
3.2×; and (RM) 2.3×, 2.7×.

for each dataset and used up to four compute nodes. Since out-of-
core rendering requires frequent access to storage, we launched only
one task and enabled 24 OpenMP threads that process rays in each
domain in parallel. Data loading is run sequentially.

For Enzo, our method overall achieves 1.7× speedup compared to
the baseline. However, if we compare the loading time, our method
achieves up to 3.2× speedup. So our method has improved the
loading time at the expense of compromised rendering time, which
is due to aggressive speculation.

Likewise, for RM, our system achieves 2.3× speedup for overall
running time and 2.7× speedup for loading time. As shown in the
plot, the performance improvement comes from reducing the number
of data loads, each of which is up to an order of magnitude more
costly than the associated speculative rendering computation.

As we decrease the cache size, RM benefits greatly from spec-
ulation, since loads are more frequent with less cache data. Enzo
shows less of this effect, since each domain is smaller and there
are fewer domains overall. In addition, PT shows more benefit to
ray speculation since its three bounces cause more data accesses
and potentially access more of the data overall. AO and PT cast the
similar number of rays per hit (i.e., 16 shadow rays for AO and one
diffuse ray and 16 shadow rays for PT). However, AO has only one
bounce and each ray travels a limited distance (i.e., shadow rays
terminate on any hit), whereas PT has one additional diffuse ray per
hit that travels until a hit is found or it leaves the data extent.

5.1.2 In Situ Rendering
For in situ rendering, we were only able to launch two MPI tasks
for DNS1 and one MPI task for DNS2, due to the total size of
domain data mapped to each process. If we launch more MPI tasks,
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Figure 7: Performance comparison of in situ rendering for DNS1-side, DNS1-back, and DNS2 (from left to right). Our speculative method mostly outperforms the
baseline. Maximum speedup for total running time and rendering time, respectively: (a) 1.6×, 2.2×; (b) 1.9×, 2.0×; and (c) 1.7×, 2.3×. Our method due to speculation
particularly compromises ray communication time. The ratio of ray communication time for our method and the baseline: (a) 4 - 18; (b) 2 - 6; and (c) 7 - 21. Other types
of communication are relatively negligible for both methods. The average percentage of ray communication time compared to total communication time for the baseline
and our method, respectively: (a) 94%, 95%; (b) 99%, 96%; and (c) 95%, 98%.

the system quickly consumes most of the memory on Skylake and
throws a memory allocation error. Our code currently does not
support threading for the in situ rendering, but the current setup is
sufficient for comparing the two methods. Because of the large data
size, we used more nodes than in the out-of-core tests (i.e., 8 nodes
for DNS1-side and 16 nodes for DNS1-back and DNS2).

For some test cases (e.g., PT on 16 nodes for DNS1-back and
DNS2), our system ran out of memory due to excessive ray specu-
lation. However, as the baseline system exhibited similar behavior
on tests with fewer nodes (e.g., AO on 8 nodes or less for DNS2),
the issue appears not to be unique to our system. For a quick test,
reducing the image resolution to 512×512 on our speculative system
alleviated memory pressure, leading to successful rendering jobs.
This implies that we could apply blocking via tile scheduling so our
method would still be able to render without a memory explosion.
We will explore improved ray memory controls in future work.

Fig. 7 shows the results for the DNS dataset. DNS2 is the largest
one that we have rendered in this paper. As in the out-of-core case,
we compare both AO and PT performance with the baseline method
and ours. In addition to the rendering time, we also measure the time
for various types of synchronization across the cluster, including
communication for ray batches (SyncRays), work counts (Sync-
Work), image compositing (SyncImage), and visibility compositing
for our method only (SyncSpecu).

Overall, our speculative method achieves similar performance
gains for both AO and PT. The running time is mostly dominated by
the rendering time, which would greatly be reduced if we parallelize
ray processing with threading and vectorization. Unlike the baseline,
our method incurs longer ray communication time (i.e., 2 - 21×
worse) because of all the speculative rays generated. For the same
reason, the running time tends to approach that of the baseline with
increase in the number of nodes, especially prominent with PT runs.
Nevertheless, our method still achieves up to 1.8× speedup for
overall running time and up to 2.3× speedup for rendering time.

The first two plots in Fig. 7 show the results for the DNS1 data
from different view points. In both cases, our method mostly out-
performs the baseline. The results for DNS1-back generally show
longer running time for both the baseline and our method. This is
mainly because there are more domains aligned along the viewing
direction, requiring additional rendering computations.

6 DISCUSSION

Fig. 8 implies that we can control speculation to improve perfor-
mance. The loading time decreases as the history depth grows (i.e.,
1 ≤ H ≤ B) but starts to level off as the history depth becomes large
enough (i.e., H > B). Another takeaway is that we need a mechanism
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Figure 8: The effects of varying the history depth (H) and the number of ray
bounces (B) when our path tracer was run on a node to render images of the
Enzo and RM datasets (left and right) in out-of-core mode with 50% cache sizes
(8 and 26 domains each). The test case of 8 bounces on RM fails for H>4 due
to a memory explosion.

to stop performing speculation as it may exhaust memory space.
Although our current in situ renderer casts only a bounce worth

of speculative rays, we could potentially take a similar approach
to adjust speculation by having a larger t-buffer and o-buffer. This
would greatly increase communication time. However, we believe
that this challenge can be overcome by overlapping the rendering
computation and ray communication.

Since our current in situ renderer can perform a simple round-
robin scheduling, we can possibly incorporate our out-of-core
scheduling capability to make it a hybrid of the two. However,
having separate modes in our system serves a reasonable purpose
for practicality. In situ visualization is preferred when abundant
resources are available to a user. However, many practical reasons
in a supercomputing environment (e.g., limited job queues, a long
node acquisition time, etc.) suggest that one might prefer conducting
visual analysis post hoc using fewer nodes.

7 CONCLUSION

In this paper, we have shown that speculatively producing and pro-
cessing rays can correctly render large-scale data having billions of
triangles. More importantly, we have experimentally demonstrated
that our speculative system outperforms traditional methods for ray
batching and scheduling in both out-of-core and in situ rendering
scenarios. To verify both use cases, we have introduced two different
system variants sharing the same spirit of the speculate-first-and-
resolve-later concept. This new concept in ray scheduling for large
data visualization has been enabled by defining different kinds of
buffers and queues along with scheduling policies and algorithms to
efficiently manage them.
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