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SpRay’s path tracing result

Turbulent channel-flow DNS dataset 
1.8 billion triangles, 483 GB raw data



Challenges for rendering large data

Come up with a smart schedule that reduces expensive 
I/O costs while maximizing locality and parallelism for 
ray processing

Rays traverse different 
domains

Subdivide the 
scene into domains
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Problem



Baseline algorithm*: ray queuing and scheduling
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Secondary rays result in frequent rescheduling
Problem: costly I/O operations for out-of-core rendering
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Traversal order results in low processor utilization
Q: Which domain should a ray be placed in?

     Or, which domain might have the first hit point for a given ray?

A: Most methods assume the domain closest to the ray origin is mostly likely

Only one node is active at a time
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Amount of work is drastically reduced over time
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Speculate first and resolve later

Potential speedup

All speculations resolved for correct visibility 
at the end of ray processing
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Region of speculative work

Exploitation of abundant parallelism by discarding dependencies

Amortization of I/O costs over processing ray batches



Amortize loading costs over ray processing
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c d
Schedule
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Schedule
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SpRay assumes that all domains are equally likely to have the first hit point for a given ray, 
speculatively performing ray placement, ray-primitive tests, and creation of new rays

We need only up to 2 loads per domain for one bounce worth of speculative rays

Ray distribution 
based front-to-back 
reordering



Speculate intersection points and occlusions
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Perform another round to resolve speculative shadow rays
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Resolve speculative shadows and retire pixels
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Evaluation



Experimental setup

Enzo
940 GB raw data

16 domains
6 M triangles

RM
8 GB raw data

52 domains
108 M triangles

DNS1-side
483 GB raw data

720 domains
0.9 B triangles

DNS1-back
483 GB raw data

720 domains
0.9 B triangles

DNS2
483 GB raw data

1427 domains
1.8 B triangles

❏ Compared SpRay with Baseline for in situ and out-of-core use cases

❏ Limited the domain cache size to emulate out-of-core rendering

❏ 1-bounce ambient occlusion (AO) and 3-bounce path tracing (PT)

❏ 32 camera rays per pixel, 64 shadow rays per hit point, 1 Megapixel image



Out-of-core: up to 2.3x speedup with fewer loads
Enzo, 1 node RM, 1 node

Up to 3.2x for the loading time 

Render Loading 25-100: domain cache size (% of total domain count)



Out-of-core: effective with larger data
Enzo, 1 node RM, 1 node

Loading costs become more amortized as memory pressure grows

Render Loading 25-100: domain cache size (% of total domain count)



Out-of-core: performance vs. speculation level

Overall loading time reduced as the speculation level (history depth) grows

Memory explosion 
beyond this point

Enzo RM

Path tracing, 1 node, 50% domain cache sizes



In situ: 1.9x speedup overall with comm. overhead

DNS1-side DNS1-back DNS2

We could further achieve up to 2.3x speedup by overlapping communication

Render Communication



Summary



SpRay: a system for speculative ray scheduling
❏ Introduced the speculate-first-and-resolve-later concept for rendering large 

data subdivided into domains

❏ Showed SpRay outperforming typical methods for ray scheduling in both 
out-of-core and in situ rendering scenarios on a supercomputing environment



Vision: a system with controlled speculation
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Thank you
https://github.com/TACC/SpRay
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