
SpRay: Speculative Ray Scheduling for
Large Data Visualization

Hyungman Park*‡ Donald Fussell† Paul Navrátil‡

*Electrical and Computer Engineering †Computer Science ‡Texas Advanced Computing Center
The University of Texas at Austin

SpRay’s path tracing result

Turbulent channel-flow DNS dataset
1.8 billion triangles, 483 GB raw data

Challenges for rendering large data

Come up with a smart schedule that reduces expensive
I/O costs while maximizing locality and parallelism for
ray processing

Rays traverse different
domains

Subdivide the
scene into domains

Node 0

Memory

CPU ●●
Node N-1

Memory

CPU

Storage

Send rays and/or load
domains as needed

Domain A Domain B

Problem

Baseline algorithm*: ray queuing and scheduling

Schedule
A

Schedule
B

* [Pharr 1997] [Navrátil 2013] [Son 2017]

Domain A Domain B Domain A Domain B Domain A Domain B

Domain A Domain B Domain A Domain B

Secondary rays result in frequent rescheduling
Problem: costly I/O operations for out-of-core rendering

Schedule
A

Domain A
rescheduled!

Schedule
B

Domain A Domain B

Schedule
A

Domain A Domain B Domain A Domain B Domain A Domain B

Domain A Domain B

Traversal order results in low processor utilization
Q: Which domain should a ray be placed in?

 Or, which domain might have the first hit point for a given ray?

A: Most methods assume the domain closest to the ray origin is mostly likely

Only one node is active at a time

Schedule
A

●●

Domain A
on node 0

Domain B
on node 1

Schedule
B

●●

Domain A
on node 0

Domain B
on node 1

Amount of work is drastically reduced over time

Amount of
ray work

Time

Baseline

Camera rays

Secondary rays

SpRay

Speculate first and resolve later

Potential speedup

All speculations resolved for correct visibility
at the end of ray processing

Amount of
ray work

Time

Baseline

SpRay

Region of speculative work

Exploitation of abundant parallelism by discarding dependencies

Amortization of I/O costs over processing ray batches

Amortize loading costs over ray processing

a b

c d
Schedule

a,b,c,d

Schedule
a,b,c,d Resolve

SpRay assumes that all domains are equally likely to have the first hit point for a given ray,
speculatively performing ray placement, ray-primitive tests, and creation of new rays

We need only up to 2 loads per domain for one bounce worth of speculative rays

Ray distribution
based front-to-back
reordering

Speculate intersection points and occlusions

Po
in

t-t
o-

po
in

t R
ay

 S
en

di
ng

Node 0

Node 1

Use case: 2 nodes, each owning a domain

b

a

b

a

b

a

b

a

b

a

b

a

b

a

Update
occlusions

C
om

po
si

te
 V

is
ib

ili
ty

R
es

ol
ve

R
es

ol
ve

Perform another round to resolve speculative shadow rays

b

a

b

a

b

a

Update
intersections

b

a

b

a

b

a

Unresolved

Resolve speculative shadows and retire pixels

Po
in

t-t
o-

po
in

t R
ay

 S
en

di
ng

Node 0

Node 1

C
om

po
si

te
 V

is
ib

ili
ty

R
es

ol
ve

R
es

ol
ve

b

a

Update
occlusion

R
et

ire
R

et
ire C

om
po

si
te

 P
ix

el
s

ImageUnresolved
b

a

Use case: 2 nodes, each owning a domain

b

a

b

a

b

a

Evaluation

Experimental setup

Enzo
940 GB raw data

16 domains
6 M triangles

RM
8 GB raw data

52 domains
108 M triangles

DNS1-side
483 GB raw data

720 domains
0.9 B triangles

DNS1-back
483 GB raw data

720 domains
0.9 B triangles

DNS2
483 GB raw data

1427 domains
1.8 B triangles

❏ Compared SpRay with Baseline for in situ and out-of-core use cases

❏ Limited the domain cache size to emulate out-of-core rendering

❏ 1-bounce ambient occlusion (AO) and 3-bounce path tracing (PT)

❏ 32 camera rays per pixel, 64 shadow rays per hit point, 1 Megapixel image

Out-of-core: up to 2.3x speedup with fewer loads
Enzo, 1 node RM, 1 node

Up to 3.2x for the loading time

Render Loading 25-100: domain cache size (% of total domain count)

Out-of-core: effective with larger data
Enzo, 1 node RM, 1 node

Loading costs become more amortized as memory pressure grows

Render Loading 25-100: domain cache size (% of total domain count)

Out-of-core: performance vs. speculation level

Overall loading time reduced as the speculation level (history depth) grows

Memory explosion
beyond this point

Enzo RM

Path tracing, 1 node, 50% domain cache sizes

In situ: 1.9x speedup overall with comm. overhead

DNS1-side DNS1-back DNS2

We could further achieve up to 2.3x speedup by overlapping communication

Render Communication

Summary

SpRay: a system for speculative ray scheduling
❏ Introduced the speculate-first-and-resolve-later concept for rendering large

data subdivided into domains

❏ Showed SpRay outperforming typical methods for ray scheduling in both
out-of-core and in situ rendering scenarios on a supercomputing environment

Vision: a system with controlled speculation

Simulation
Data

Images

User constraints

SpRay
Speculation

control

Thank you
https://github.com/TACC/SpRay

Acknowledgments
National Science Foundation grant ACI-1339863
Intel Visualization Center of Excellence award through the IPCC program
Nick Malaya and Bob Moser at UT Austin for providing the DNS data

[Pharr 1997]

Rendering Complex Scenes with Memory-Coherent Ray Tracing
Matt Pharr, Craig Kolb, Reid Gershbein, Pat Hanrahan, SIGGRAPH 1997

[Navrátil 2013]

Exploring the Spectrum of Dynamic Scheduling Algorithms for Scalable
Distributed-Memory Ray Tracing
Paul A. Navrátil, Hank Childs, Donald S. Fussell, Calvin Lin, IEEE TVCG 2013

[Son 2017]

Timeline Scheduling for Out-of-Core Ray Batching
Myungbae Son and Sung-Eui Yoon, HPG 2017

References

